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The purpose of this research is to study the plane problem in initially stressed generalized ther-
moelastic half-space with voids due to thermal source. A particular type of thermal source has
been taken as an application of the approach. Finite element technique has been used to solve the
problem. The components of displacement, stress, temperature change and volume fraction field
are computed numerically. Effect of relaxation times and initial stress are depicted graphically on
the resulting quantities.
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1. INTRODUCTION
The study of dynamic properties of elastic solids is signifi-
cant in the ultrasonic inspection of materials, vibrations of
engineering structures, in seismology, geophysical and var-
ious other fields. Such materials are usually described by
equations of linear elastic solids; however there are mate-
rials of a more complex microstructure (composite mate-
rials, granular materials, soils, etc.) which depict specific
characteristic response to applied load. There are a num-
ber of theories which describe mechanical properties of
porous materials, and one of them is a Biot1–3 consolida-
tion theory of fluid-saturated porous solids. These theories
reduce to classical elasticity when the pore fluid is absent.
Goodman and Cowin4 established a continuum theory for
granular materials, whose matrix material (or skeletal) is
elastic and interstices are voids. They formulated this the-
ory from the formal arguments of continuum mechanics
and introduced the concept of distributed body, which rep-
resents a continuum model for granular materials (sand,
grain, powder, etc.) as well as porous materials (rock, soil,
sponge, pressed powder, cork, etc.). The basic concept
underlying this theory is that the bulk density of the mate-
rial is written as the product of two fields, the density field
of the matrix material and the volume fraction field (the
ratio of the volume occupied by grains to the bulk volume
at a point of the material). This representation of the bulk
density of the material introduces an additional kinematic

∗Author to whom correspondence should be addressed.

variable in the theory. This idea of such representation of
the bulk density was employed by Nunziato and Cowin5 to
develop a non-linear theory of elastic material with voids.
They developed the constitutive equations for solid like
material which are non conductor of heat and discussed
the restrictions imposed on these constitutive equations by
thermodynamics. They showed that the change in the vol-
ume fraction causes an internal dissipation in the mate-
rial which is similar to that associated with viscoelastic
materials. They also considered the dynamic response and
derived the general propagation conditions on acceleration
waves. Later on Cowin and Nunziato6 developed a theory
of linear elastic materials with voids for the mathemat-
ical study of the mechanical behavior of porous solids.
They considered several application of the linear theory by
investigating the response of the materials to homogeneous
deformations, pure bending of beam, and small amplitudes
of acoustic waves. The small acoustic waves in an infinite
elastic material with voids showed that two distinct types
of longitudinal waves and a transverse wave can propagate
without affecting the porosity of the material and with-
out attenuation. The two types of longitudinal waves are
attenuated and dispersed; one longitudinal wave is associ-
ated with elastic property of the material and the second
associated with the property of the change in porosity of
the material. These longitudinal acoustic waves are both
attenuated and dispersed due to the change in the material
porosity. Iesan7–9 has developed a linear theory of ther-
moelastic material with voids by generalizing some ideas
of the papers. In Iesan8 developed a theory of initially
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stressed thermoelastic material with voids. Ciarletta and
Scalia10 investigated the uniqueness and reciprocity theo-
rems in linear thermoelasticity of material with voids.
During the last three decades, non-classical theories

of thermoelasticity so called generalized thermoelastic-
ity have been developed in order to remove the paradox
of physically impossible phenomenon of infinite veloc-
ity of thermal signals in the conventional coupled ther-
moelasticity. Lord-Shulman11 theory and Green-Lindsay12

theory are important generalized theories of thermoelas-
ticity that become center of interest of recent research in
this area. In Lord-Shulman theory, a flux rate term into
the Fourier’s law of heat conduction is incorporated (with
one relaxation time) and formulated a generalized theory
admitting finite speed for thermal signals. Green-Lindsay
theory called as temperature rate-dependent thermoelastic-
ity in which temperature rate-dependent is included among
the consecutive variables with two constants that act as
two relaxation times, which does not violate the clas-
sical Fourier law of heat conduction when body under
consideration has a center of symmetry. The Lord and
Shulman theory of generalized thermoelasticity was fur-
ther extended to homogeneous anisotropic heat conduct-
ing materials recommended by Dhaliwal and Sherief.13 All
these theories predict a finite speed of heat propagation.
Initial stresses are developed in the medium due to many

reasons, resulting from difference of temperature, process
of quenching, shot pinning and cold working, slow process
of creep, differential external of forces, gravity variations,
etc. The Earth is supposed to be under high initial stresses.
It is therefore of great interest to study the effect of these
stresses on the propagation of stress waves. During the
last five decades considerable attenuation has been directed
towards this phenomenon. Biot3 depicted that the acoustic
propagation under initial stresses would be fundamentally
different from that under stress free state. He has obtained
the velocities of longitudinal and transverse waves along
the coordinate axis only.
Singh et al.14 discussed the reflection of generalized

thermoelastic waves from a solid half-space under hydro-
static initial stress. Fahmy and El-Shahat15 studied the
effect of initial stress and inhomogeneity on the thermoe-
lastic stresses in a rotating anisotropic solid. Effect of mag-
netic field and initial stress on the propagation of interface
waves in transversely isotropic perfectly conducting media
was investigated by Acharya, Roy and Sengupta.16 Abd-
Alla and Alsheikh17 studied the reflection and refraction
of plane quasi-longitudinal waves at an interface of two
piezoelectric media under initial stresses. Singh18 investi-
gated the wave propagation in a prestressed piezoelectric
half-space.
The exact solution of the governing equations in initially

stressed thermoelastic half-space with voids for a coupled
and nonlinear/linear system exists only for very special and
simple initial and boundary problems. A numerical solu-
tion technique is used to calculate the solution of general

problems. For this reason the finite element method is
chosen.
The finite element method is a powerful technique orig-

inally developed for numerical solution of complex prob-
lem in structural mechanics, and it remains the method
of choice for complex system. A further benefit of this
method is that its allow physical effects to be visual-
ized and quantified regardless of experimental limitations.
Abbas et al.19–23 and Othman et al.24 have successfully
applied finite element method to various problems in
generalized thermoelastic materials. Recently,25–27 variants
problems in waves are studied. Other forms are described
for example in the Refs. [28–30].
The aim of the present study is to enhance our knowl-

edge about the application of finite element method in
initially stressed thermoelastic half-space with voids. This
study has many applications in various fields of science
and technology, namely, atomic physics, industrial engi-
neering, thermal power plants, submarine structures, pres-
sure vessel, aerospace, chemical pipes and metallurgy.
In the present paper, the components of displacement,

stress, temperature change and volume fraction field are
obtained due to thermal source. The resulting quantities
are computed numerically by finite element technique and
depicted graphically.

2. BASIC EQUATION
Following Lord and Shulman,11 Magana and Quintanilla,31

Iesan,8 the basic equations for homogeneous initially
stressed generalized thermoelastic with voids material are
The stress–strain relation in isotropic medium

tij = ��ijul�l+��ui�j +uj�i�+ t0ui�j

+�∗�ij�−	�ij

(
1+ 
1

�

�t

)
T (1)

Equations of motion

��+ t0��u+ ��+��grad divu+�∗grad�

−	

(
1+ 
1

�

�t

)
gradT = ü (2)

Equilibrated stress equation of motion

�d�−���−�0�̇−�∗divu+b∗
1

(
1+
1

�

�t

)
T =��̈ (3)

Equation of heat conduction(
1+ 
0

�

�t

)
C∗Ṫ +T0
m0�b

∗
1 �̇+	divu̇�= k�T (4)

where

m0 = 1+m0
0

�

�t
(5)

where �, � are Lame’s constants,  is the density, u =
�u� v�w� is the displacement vector, �ij is the stress tensor,
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t0jm is the initial stress parameter, �∗d, b∗
1 , �0, � are the

constitutive constant of the medium C∗ is the specific heat,
	 = �3�+ 2���t , �t is the coefficient of linear thermal
expansion. � is the Laplacian operator, ��= �−�0� is the
volume fraction field and �0 is the matrix volume fraction
at the reference state. T is the temperature change which
is measured from the absolute temperature T0 (T0 �= 0). We
assume that T0 and �0 are constants. 
0, 
1 are thermal
relaxation times. For Lord and Shulman (LS) theory m0 =
1 and for Green and Lindsay (GL) theory m0 = 0. The
thermal relaxation times 
0 and 
1 satisfies the inequal-
ity 
1 ≥ 
0 > 0 for GL-theory only. However, it has been
proved by Sturnin32 that the inequality is not mandatory
for 
0 and 
1 to follow. In the above equations the comma
notation denotes partial derivatives with respect to special
coordinate and dot denotes the derivative with respect to
time.

2.1. Formulation of the Problem
We consider the medium of isotropic generalized thermoe-
lastic diffusion with voids under initial stress. The origin
of the Cartesian coordinate system �x� y� z� is taken at
any point and z-axis taking vertically downward into the
medium. For two dimensional problem, we have

u= �u�0�w� (6)

We define the dimensionless quantities:

x′ = �∗
1x

c1
� z′ = �∗

1z

c1
� t′ =�∗

1t� u′ = �∗
1u

c1
� w′ = �∗

1w

c1
�

�′ = �∗2
1 ��

c21
� T ′ = 	T

c21
� t′ij =

tij

	T0
� c21=

�+2�


� (7)


 ′
0=�∗

1
0� 
 ′
1=�∗

1
1� �∗
1=

C∗��+2��
k

Here �∗
1 and c1 are the characteristic frequency and lon-

gitudinal wave velocity in the medium respectively.
Upon introducing the quantities (7) in the Eqs. (2)–(5)

with the aid of (6) and after suppressing the primes, we
obtain

�1�u+�2

�e

�x
+�3

��

�x
−
(
1+ 
1

�

�t

)
�T

�x
= ü (8)

�1�w+�2

�e

�z
+�3

��

�z
−
(
1+ 
1

�

�t

)
�T

�z
= ẅ (9)

(
�4�+�5+�6

�

�t

)
�+�7e+�8

(
1+ 
1

�

�t

)
T = �̈ (10)


m0��9ė+�10�̇�+�11

(
1+ 
0

�

�t

)
Ṫ = k�T (11)

where

�1 =
t0+�

�+2�
� �2 =

�+�

�+2�
� �3 =

�∗

��∗2
1

�

�4 =
d

���+2��
� �5 =− �

��∗2
1

� �6 =− �0

��∗
1

�

�7 =− �∗

�+2�
� �8 =

b∗
1

	
� �9 =

T0	
2

�∗
1

� (12)

�10 =
T0b

∗
1c

2
1	

��∗3
1

� �11 =
C∗c21
�∗

1

� �12 =
Bc21
��∗2

1

�

e = �u

�x
+ �w

�z
� �= �2

�x2
+ �2

�z2

From the Eqs. (1) and (7), the stress components in
dimensionless form are,

txx =
1

	T0

[
��+2�+ t0�u�x +�w�z

+�12�−c21

(
1+ 
1

�

�t

)
T

]
(13)

tzz =
1

	T0

[
�u�x + ��+2�+ t0�w�z

+�12�−c21

(
1+ 
1

�

�t

)
T

]
(14)

txz =
1

	T0
���+ t0�u�z+�w�x� (15)

2.2. Initial and Boundary Condition
The above Eqs. (8)–(11) are solved subjected to initial
conditions

u=w=�=T =0� u̇= ẇ= �̇= Ṫ =0� t=0 (16)

The boundary condition for the problem may be taken a

T �0� z� t�= T0��t���2l−�z��� ��

�x
= 0�

�xx�0� z� t�= 0� �xz�0� z� t�= 0
(17)

where H�� is the Heaviside unit step.

2.3. Finite Element Formulation
In this section, the governing equations of generalized ther-
moelastic diffusion with relaxation times are summarized,
followed by the corresponding finite element equations.
In the finite element method, the displacement components
u, w, volume fraction � and temperature change T are
related to the corresponding nodal values by

u=
m∑
i=1

Niui�t�� w =
m∑
i=1

Niwi�t�

T =
m∑
i=1

NiTi�t�� � =
m∑
i=1

Ni�i�t�

(18)

where m denotes the number of nodes per element, and
Ni are the shape functions. The eight-node isoparamet-
ric, quadrilateral element is used for displacement compo-
nents, volume fractional field and temperature calculations.
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The weighting functions and the shape functions coincide.
Thus,

�u=
m∑
i=1

Ni�ui� �w =
m∑
i=1

Ni�wi

�� =
m∑
i=1

Ni��i� �T =
m∑
i=1

Ni�Ti

(19)

It should be noted that appropriate boundary condi-
tions associated with the governing Eqs. (8)–(11) must be
adopted in order to properly formulate a problem. Bound-
ary conditions are either essential (or geometric) or natu-
ral (or traction) types. Essential conditions are prescribed
displacements u�w� volume fraction � and temperature
change T while, the natural boundary conditions are pre-
scribed tractions, heat flux and equilibrated stress which
are expressed as

�xxnx +�xznz = 
̄x� �xznx +�zznz = 
̄z�

qxnx +qznz = q̄� hxnx +hznz = h
(20)

where nx and nz are direction cosines of the outward unit
normal vector at the boundary, 
̄x, 
̄z are the given tractions
values, q̄ is the given surface heat flux and h is the given
equilibrated stress value. In the absence of body force, the
governing equations are multiplied by weighting functions
and then are integrated over the spatial domain � with the
boundary � . Applying integration by parts and making use
of the divergence theorem reduce the order of the spatial
derivatives and allows for the application of the boundary
conditions. Thus, the finite element equations correspond-
ing to Eqs. (8)–(11) can be obtained as

m∑
e=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎣
M11 0 0 0
0 M22 0 0
0 0 M33 0
0 0 0 M44

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ü
ẅ
�̈

T̈

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 R33 0
R41 R42 R43 R44

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

u̇
ẇ
�̇

Ṫ

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

0 0 0 K44

⎤
⎥⎥⎦

×

⎧⎪⎪⎨
⎪⎪⎩

u
w
�
T

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩

F1
F2
F3
F4

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

where the coefficients in Eq. (21) are given below

M11 =
∫
�
�N �T �N �d�� M22 =

∫
�
�N �T �N �d��

M33 =
∫
�
�N �T �N �d�� M44 =

∫
�
�12
0�N �T �N �d��

R33 =
∫
�
�6�N �T �N �d�� R44 =

∫
�
�8�N �T �N �d��

R41 =
∫
�
�10�N �T

[
�N

�x

]
d�� R42 =

∫
�
�10�N �T

[
�N

�z

]
d��

R43 =
∫
�
�11�N �T N d��

K11 =
∫
�
��1+�2�

[
�N

�x

]T [
�N

�x

]
+�1

[
�N

�z

]T [
�N

�z

]
d��

K12 =
∫
�
�2

[
�N

�x

]T [
�N

�z

]
d��

K13 =
∫
�
�4�N �T

[
�N

�x

]
d�� K14 =

∫
�
�N �T

[
�N

�x

]
d��

K21 =
∫
�
�2

[
�N

�z

]T [
�N

�x

]
d��

K22 =
∫
�
��1+�2�

[
�N

�z

]T [
�N

�z

]
+�1

[
�N

�x

]T [
�N

�x

]
d��

K23 =
∫
�
�3�N �T

[
�N

�z

]
d�� K24 =−

∫
�
�N �T

[
�N

�z

]
d��

K31 =
∫
�
�7�N �T

[
�N

�x

]
d�� K32 =−

∫
�
�7�N �T

[
�N

�z

]
d��

K33=
∫
�

(
�4

[[
�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

]]
+�5�N �T N

)
d��

K34 =
∫
�
�4�N �T N d��

K44 =
∫
�
k

([
�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

])
d��

F1 =
∫
�
�N �T 
̄x d�� F2 =

∫
�
�N �T 
̄y d��

F3 =
∫
�
�N �T q̄ d�� F4 =

∫
�
�N �T h̄ d� (22)

Symbolically, the discretized equations of Eqs. (21) can
be written as

Md̈+Rḋ+Kd = F ext (23)

where M , R, K and F ext represent the mass, damping,
stiffness matrices and external force vectors, respectively;
d= �u w � T �T . On the other hand, the time derivatives of
the unknown variables have to be determined by Newmark
time integration method (see Wriggers Ref. [33]).

2.4. Numerically Results and Discussion
With the view of illustrating theoretical results derived in
the preceding sections, and compare these in the context
of various theories of initially stressed thermoelastic with
voids, we now present some numerical results for copper
material, the physical data for which is given by

�=7�76×1010 Kg m−1 s−2� �=3�86×1010 Kg m−1 s−2�

k=386 W m−1 K−1� =8�954×103 Kg m−3

4 J. Comput. Theor. Nanosci. 11, 1–8, 2014
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�t=1�78×10−5 K−1� C∗=0�3831×103 J Kg−1 K−1�

T0=0�293×103 Kg m−3

The voids parameter, initial stress parameters and relax-
ation times are

�0 = 0�687×10−5 N s m−2� � = 0�610×10−15 m2�

d = 0�9798×10−5 N� �∗ = 0�4×1010 N m−2�

t0 = 0�5×1010 N m−2� 
0 = 0�02 s� 
1 = 0�05 s�

� = 0�196×104 N m−2

3. DISCUSSION
Case 1: Figures 1–7 shows the variation of normal dis-
placement u and tangential displacement w, Temperature
change T , volume fraction field �, Normal and stress com-
ponents txx, txz, tzz with x for CT, LS and GL theories
of thermoelasticity. In these figures solid line, dash line
and dotted lines corresponds to CT, LS and GL theories
of thermoelasticity.
Figure 1 shows that value of u increase initially and in

this range the value of u are higher for LS and minimum
for GL theory and thereafter decrease with increase in x
and shows the opposite behavior. The values of CT theory
lies between the values of LS and GL theories.

Fig. 1. The horizontal displacement distribution u under three theories.

Fig. 2. The vertical displacement distribution w under three theories.

Fig. 3. The temperature distribution T under three theories.

Fig. 4. The volume fraction � distribution under three theories.

Figure 2 shows that tangential displacement w decrease
when 0< x < 1�5 and has a constant behavior for x < 1�5.
In the range 0 < x < 0�8, w attains higher value for GL
theory and for x > 0�8, the higher values occurs for CT
theory. The minimum values occurs for LS theory for all
values of x.
Figure 3 indicates that behavior of temperature change

T is similar for all theories CT, LS, GL in the range 0 <
x < 1 and CT attains maximum value as x increases fur-
ther. Temperature change decrease with increase in x and

Fig. 5. The stress txx distribution under three theories.

J. Comput. Theor. Nanosci. 11, 1–8, 2014 5
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Fig. 6. The stress txz distribution under three theories.

Fig. 7. The stress tzz distribution under three theories.

becomes constant as x increases further for all theories of
thermoelasticity.
Figure 4 shows that the value of volume fraction field �

first increase smoothly with x and then becomes constant.
Initially maximum value occurs for LS theory and mini-
mum value for GL theory in the range 0 < x < 0�5 and
shows opposite behavior for 0�5< x < 1. The behavior of
values of CT theory is similar and its values lies between
the values of LS and GL theories when 0 < x < 0�4 and
after that its value are smaller than the LS and GL theories.
Figure 5–7 depicts that stress components txx, tzz and

txz fluctuates in the range 0 < x < 1�5 and increase in
the range 1�5 < x < 2�5 and constant behavior is noticed

Fig. 8. The horizontal displacement distribution u for different values
of initial stress t0 under GL theory.

Fig. 9. The vertical displacement distribution w for different values of
initial stress t0 under GL theory.

Fig. 10. The temperature T distribution for different values of initial
stress t0 under GL theory.

elsewhere. For GL theory, txx attains extreme values and
tzz attains maximum value. Also tzz attains minimum value
for LS theory at x = 0�6. The behavior and variation of
txx, tzz and txz are similar for CT theories as for LS and
GL theories with difference in their magnitude values.
Case 2: Figures 8–14 shows the variation of Normal dis-

placement u and tangential displacement w, Temperature

Fig. 11. The volume fraction � distribution for different values of initial
stress t0 under GL theory.

6 J. Comput. Theor. Nanosci. 11, 1–8, 2014
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Fig. 12. The stress txx distribution for different values of initial stress
t0 under GL theory.

Fig. 13. The stress txz distribution for different values of initial stress
t0 under GL theory.

change T , volume fraction field �, stress components txx,
txz and tzz with x for different initial stress parameters.
In these figures solid line, dash line, dotted line and dash
line with dots corresponds to initial stress parameters t0 =
0�5×1010, 10×1010, 15×1010 respectively.
Figure 8 shows that the value of u increase rapidly in

the range 0<x < 0�6 and then decrease and becomes con-
stant. In the range 0 < x < 0�25, the values of normal
displacement u increase with increase in relaxation times.

Fig. 14. The stress tzz distribution for different values of initial stress
t0 under GL theory.

The behavior of u for all initial stress parameters are oppo-
site in the ranges 0< x < 0�25 and 0�25< x < 0�6.
It is noticed from Figure 9 that tangential displace-

ment (w) decrease in the range 0 < x < 0�6 and its value
decreases as initial stress parameter increases with maxi-
mum value occurring for t0 = 0 and for x > 0�6 it decrease
continuously for all initial stress parameters and shows
negligible variation for different initial stress parameters
and finally constant behavior is noticed.
Figure 10 shows that temperature change T coincide

for all initial stress parameters and decrease smoothly and
becomes constant for x > 2.
Figure 11 shows that � increase smoothly in the range

0 < x < 0�6 and then becomes constant. The behavior of
and variation in values of � are opposite in the ranges
0 < x < 0�25 and 0�25 < x < 0�6 for all initial stress
parameters.
Figures 12–14 depicts that stress components txx, tzz and

txz fluctuates in the range 0 < x < 1�5 and increase in the
range 1�5 < x < 2�5 and becomes constant elsewhere. txx
attains maximum value for t0 = 0 whereas point at which
the minimum value of txx occurs is same for all initial
stress parameters. The values of txz decrease with increase
in initial stress parameter whereas values of tzz increase
with increase in initial stress parameter.

4. CONCLUSION
The plane problem in initially stressed generalized ther-
moelastic half-space with voids due to thermal source
is studied for a particular type of thermal source using
finite element technique. The components of displace-
ment, stress, temperature change and volume fraction field
are computed numerically. are depicted graphically on
the resulting quantities. Appreciable effect of initial stress
paramater is observed on the resulting quantities.
The variation of normal and tangential displacement u,

w, Temperature change T , volume fraction field �, stress
components txx, txz, tzz for CT, LS, GL theories of ther-
moelasticity is significant.
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